Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Pathog ; 188: 106550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262494

RESUMO

Cytokines of the interleukin (IL)-1 superfamily including the different IL-36 isoforms, have been reported as mediators of acute and chronic inflammation in human skin diseases, such as psoriasis. Here, we demonstrated for the first time that Sporothrix schenckii and S. brasiliensis, the fungi that cause subcutaneous infection sporotrichosis, can induce the expression of IL-36α, IL-36γ and IL-36Ra in human keratinocytes and primary peripheral blood mononuclear cells (PBMCs). Specifically, IL-36γ was differentially expressed by keratinocytes stimulated with Sporothrix yeasts when compared to the commensal microorganism Staphylococcus epidermidis. The exposure of keratinocytes to 24 h or 7-days culture supernatant of PBMCs stimulated with Sporothrix induced higher IL-36γ production compared to direct stimulation of keratinocytes with the live fungus. We identified that IL-36γ mRNA expression in keratinocytes is increased in the presence of IL-17, TNF, IL-1ß and IL-1α and these cytokines may act synergistically to maintain IL-36γ production. Lastly, using a cohort of 164 healthy individuals, we showed that individuals carrying variants of the IL36G gene (rs11690399 and rs11683399) exhibit increased IL-36γ production as well as increased innate cytokine production after Sporothrix exposure. Importantly, stimulation of PBMCs with recombinant IL-36γ increased the production of IL-1ß and IL-6, while IL-36Ra were able to decrease the concentration of these cytokines. Our findings contribute to the understanding of the pathogenesis of sporotrichosis and suggest that IL-36γ may be involved in maintaining the cytokine loop that leads to tissue destruction by exacerbating the immune response in sporotrichosis. Of high interest, we present the IL-36 signalling pathway as a potential new therapeutic target.


Assuntos
Sporothrix , Esporotricose , Humanos , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Queratinócitos , Leucócitos Mononucleares , Sporothrix/genética
2.
Mycoses ; 67(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282360

RESUMO

Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.


Assuntos
Micoses , Imunidade Treinada , Humanos , Imunidade Inata , Macrófagos , Monócitos
3.
Expert Rev Vaccines ; 22(1): 1136-1153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936254

RESUMO

INTRODUCTION: Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED: This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION: Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.


Assuntos
Micoses , Vacinas , Animais , Humanos , Antifúngicos/uso terapêutico , Fungos , Micoses/prevenção & controle , Micoses/tratamento farmacológico , Micoses/epidemiologia , Vacinas/uso terapêutico , Desenvolvimento de Vacinas , Mamíferos
4.
J Fungi (Basel) ; 9(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37233259

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM.

5.
Cell Immunol ; 378: 104555, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696852

RESUMO

Sporotrichosis is a deep mycosis caused by dimorphic species of the genus Sporothrix, with differences in pathogenicity between S. schenckii and S. brasiliensis species. Recently, it was discovered that the cell wall peptidorhamnomannan (PRM) from S. brasiliensis has additional unknown rhamnose residues. We hypothesize that the structural differences of Sporothrix spp PRMs impact the host's immune response and may explain the severity of sporotrichosis caused by S. brasiliensis. We demonstrate that S. brasiliensis yeasts and its PRM (S.b PRM) induced a strong inflammatory response in human PBMCs, with high production of TNF-α, IL-6 and IL-1ß and induction of T-helper cytokines IFN-γ, IL-17 and IL-22. In contrast, S. schenckii yeasts and its PRM induced higher concentrations of interleukin-1 receptor antagonist (IL-1Ra), which resulted in low production of T-helper cytokines such as IL-17 and IL-22. CR3 and dectin-1 were required for cytokine induction by both PRMs, while TLR2 and TLR4 were required for the response of S.s PRM and S.b PRM, respectively. IL-1ß and IL-1α production induced by S. brasiliensis yeasts and S.b PRM were dependent on inflammasome and caspase-1 activation. S. schenckii and S.s PRM were able to induce IL-1ß independent of ROS. In conclusion, these findings improve our understanding of the pathogenesis of Sporothrix spp. by reporting differences of immunological responses induced by S. schenckii and S. brasiliensis. The study also opens the gateway for novel treatment strategies targeting local inflammation and tissue destruction induced by S. brasiliensis infection through IL-1 inhibition.


Assuntos
Sporothrix , Esporotricose , Citocinas , Glicoproteínas , Humanos , Interleucina-17 , Esporotricose/patologia
7.
Vet Dermatol ; 33(2): 113-e32, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34734438

RESUMO

BACKGROUND: Fungal culture is widely used as a diagnostic tool for detecting dermatophytosis. However, the presence of fungal contaminants can influence the culture's performance and compromise the diagnosis. OBJECTIVE: To verify whether the sample processing time can affect the performance of fungal culture for the diagnosis of Microsporum canis infection in cats. ANIMALS: Forty Persian cats. METHODS AND MATERIALS: Hair and scale samples were collected by combing the coat using a 5 × 5 cm sterile polyester carpet. The carpets were assigned randomly to four groups based on time point of processing samples after collection (i.e. used for culture on a selective agar medium for dermatophytes): Group 1: 8 h (n = 10); Group 2: 24 h (n = 10); Group 3: 48 h (n = 10); and Group 4: 72 h (n = 10). Cultures were compared regarding the degree of fungal invasion by either M. canis or nondermatophytic contaminant moulds (NDM). RESULTS: Processing samples after 24 h of storage resulted in increased isolation rates of NDM and decreased isolation rates of M. canis. Samples processed after 48 h and 72 h presented more than half of the plates with a high degree of fungal contamination (i.e. NDM occupying ≥50% of the total fungal mass). However, samples processed after 8 h and 24 h presented a lower degree (P < 0.05) of NDM plate invasion and higher recovery rates of M. canis when compared to samples processed after 48 h and 72 h. CONCLUSIONS AND CLINICAL IMPORTANCE: Delayed processing time is closely associated with the overgrowth of contaminants and with lower recovery rates of M. canis.


Assuntos
Doenças do Gato , Dermatomicoses , Animais , Doenças do Gato/diagnóstico , Gatos , Dermatomicoses/diagnóstico , Dermatomicoses/microbiologia , Dermatomicoses/veterinária , Cabelo/microbiologia , Microsporum , Manejo de Espécimes/veterinária
9.
J Fungi (Basel) ; 7(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071195

RESUMO

The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.

10.
Front Immunol ; 12: 670992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046037

RESUMO

Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin America caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Paracoccidioides lutzii (PL) is one of the 5 species that constitute the Paracoccidioides genus. PL expresses low amounts of glycoprotein (Gp) 43 (PLGp43) and PLGp43 displays few epitopes in common with the P. brasiliensis (PB) immunodominant antigen PBGp43, which is commonly used for serological diagnosis of PCM. This difference in structure between the glycoproteins markedly reduces the efficiency of serological diagnosis in patients infected with PL. We previously demonstrated that peptide 10 (P10) from the PBGp43 induces protective immune responses in in vitro and in vivo models of PB PCM. Since, P10 has proven to be a promising therapeutic to combat PB, we sought to identify peptides in PL that could similarly be applied for the treatment of PCM. PL yeast cell proteins were isolated from PL: dendritic cell co-cultures and subjected to immunoproteomics. This approach identified 18 PL peptides that demonstrated in silico predictions for immunogenicity. Eight of the most promising peptides were synthesized and applied to lymphocytes obtained from peptide-immunized or PL-infected mice as well as to in vitro cultures with peptides or dendritic cells pulsed the peptides. The peptides LBR5, LBR6 and LBR8 efficiently promoted CD4+ and CD8+ T cell proliferation and dendritic cells pulsed with LBR1, LBR3, LBR7 or LBR8 stimulated CD4+ T cell proliferation. We observed increases of IFN-γ in the supernatants from primed T cells for the conditions with peptides without or with dendritic cells, although IL-2 levels only increased in response to LBR8. These novel immunogenic peptides derived from PL will be employed to develop new peptide vaccine approaches and the proteins from which they are derived can be used to develop new diagnostic assays for PL and possibly other Paracoccidioides spp. These findings identify and characterize new peptides with a promising therapeutic profile for future against this important neglected systemic mycosis.


Assuntos
Antígenos de Fungos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Proteínas Fúngicas/metabolismo , Imunoterapia/métodos , Macrófagos/imunologia , Paracoccidioides/fisiologia , Paracoccidioidomicose/imunologia , Animais , Antígenos de Fungos/genética , Proliferação de Células , Células Cultivadas , Resistência à Doença , Proteínas Fúngicas/genética , Humanos , Ativação Linfocitária , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioidomicose/terapia , Peptídeos/genética , Peptídeos/metabolismo
11.
Mem Inst Oswaldo Cruz ; 115: e200401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146242

RESUMO

BACKGROUND: Candida glabrata yeast is the second cause of candidiasis worldwide. Differs from other yeasts since assimilates only glucose and trehalose (a characteristic used in rapid identification tests for this pathogen) by secreting into the medium a highly active acid trehalase encoded by the CgATH1 gene. OBJECTIVE: This study aimed to characterise the function of the acid trehalase in the physiopathology of C. glabrata. METHODS: Gene deletion was performed to obtain a mutant ath1Δ strain, and the ability of the ath1Δ strain to grow in trehalase, or the presence of trehalase activity in the ath1Δ yeast cells, was verified. We also tested the virulence of the ath1Δ strain in a murine model of infection. FINDINGS: The ath1Δ mutant strain grows normally in the presence of glucose, but loses its ability to grow in trehalose. Due to the high acid trehalase activity present in wild-type cells, the cytoplasmic neutral trehalase activity is only detected in the ath1Δ strain. We also observed a significantly lower virulence of the ath1Δ strain in a murine model of infection with either normal or immunocompromised mice. MAIN CONCLUSIONS: The acid trehalase is involved in the hydrolysis of external trehalose by C. glabrata, and the enzyme also plays a major virulence role during infectivity.


Assuntos
Candida glabrata/genética , Trealase/metabolismo , Virulência/genética , Animais , Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Candida glabrata/fisiologia , Candidíase , Deleção de Genes , Genes Fúngicos , Hidrolases , Camundongos , Trealase/genética , Trealase/fisiologia , Trealose/análise , Virulência/fisiologia
12.
Front Microbiol ; 11: 582107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240236

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen associated with life-threatening nosocomial and community-acquired infections. Antibiotic resistance is an immediate threat to public health and demands an urgent action to discovering new antimicrobial agents. One of the best alternatives for pre-clinical tests with animal models is the greater wax moth Galleria mellonella. Here, we evaluated the antipseudomonal activity of silver nanoparticles (AgNPs) against P. aeruginosa strain UCBPP-PA14 using G. mellonella larvae. The AgNPs were synthesized through a non-toxic biogenic process involving microorganism fermentation. The effect of AgNPs was assessed through characterization and quantification of the hemocytic response, nodulation and phenoloxidase cascade. On average, 80% of the larvae infected with P. aeruginosa and prophylactically treated with nanoparticles survived. Both the specific and total larvae hemocyte counts were restored in the treated group. In addition, the nodulation process and the phenoloxidase cascade were less exacerbated when the larvae were exposed to the silver nanoparticles. AgNPs protect the larvae from P. aeruginosa infection by directly killing the bacteria and indirectly by preventing an exacerbated immunological response against the pathogen. Our results suggest that the prophylactic use of AgNPs has a strong protective activity against P. aeruginosa infection.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33014889

RESUMO

Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.


Assuntos
Micoses , Nanopartículas , Vacinas , Antifúngicos/uso terapêutico , Equinocandinas , Humanos , Micoses/tratamento farmacológico , Micoses/prevenção & controle
14.
J Fungi (Basel) ; 6(3)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664191

RESUMO

Candida auris and Candida haemulonii complex (C. haemulonii, C. haemulonii var. vulnera and C. duobushaemulonii) are phylogenetically related species that share some physiological features and habits. In the present study, we compared the virulence of these yeast species using two different experimental models: (i) Galleria mellonella larvae to evaluate the survival rate, fungal burden, histopathology and phagocytosis index and (ii) BALB/c mice to evaluate the survival. In addition, the fungal capacity to form biofilm over an inert surface was analyzed. Our results showed that in both experimental models, the animal survival rate was lower when infected with C. auris strains than the C. haemulonii species complex. The hemocytes of G. mellonella showed a significantly reduced ability to phagocytize the most virulent strains forming the C. haemulonii species complex. Interestingly, for C. auris, it was impossible to measure the phagocytosis index due to a general lysis of the hemocytes. Moreover, it was observed a greater capability of biofilm formation by C. auris compared to C. haemulonii species complex. In conclusion, we observed that C. auris and C. haemulonii complex have different levels of pathogenicity in the experimental models employed in the present study.

15.
J Feline Med Surg ; 22(8): 805-808, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31592711

RESUMO

OBJECTIVES: The aim of this study was to evaluate the diagnostic concordance between the toothbrush and carpet techniques for the detection of Microsporum canis in cats in a field study. METHODS: Thirty-nine Persian cats from a cattery were used. Fungal culture samples from the haircoat of each cat were collected by stroking the coat with a sterile toothbrush and a 5 × 5 cm-sized sterile carpet square (n = 78 total samples). Specimens were inoculated onto Mycosel Agar and incubated at 25°C for 21 days. Both techniques were compared using the following parameters: number of plates without fungal growth, number of plates with contaminant growth and number of plates positive for dermatophytes. RESULTS: The feline population in the study cattery was 39. Thirty (77%) were symptomatic and nine (23%) asymptomatic. The diagnosis was made via carpet and toothbrush methods and 78 cultures were performed. On day 21, M canis was detected in all culture plates. No contaminant molds were observed. CONCLUSIONS AND RELEVANCE: The concordance rate between the carpet and toothbrush techniques among the 78 evaluable culture plates was 100%. Both methods are equally effective for collecting material for Mcanis culture. Additionally, both techniques are inexpensive and easy to perform in feline clinical practice.


Assuntos
Doenças do Gato/diagnóstico , Técnicas de Cultura/veterinária , Dermatomicoses/veterinária , Microsporum/isolamento & purificação , Animais , Doenças do Gato/microbiologia , Gatos , Técnicas de Cultura/métodos , Dermatomicoses/diagnóstico , Dermatomicoses/microbiologia
16.
Front Microbiol ; 10: 1727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417520

RESUMO

Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin American caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Notably, a Th1 immune response is required to control PCM. In this context, dendritic cells (DCs) seem to be essential players in capture, processing and presentation of Paracoccidioides antigens to naïve T cells and their further activation. We have previously demonstrated that differentiated DCs from bone marrow cells, pulsed with the immunoprotective peptide 10 (P10), effectively control experimental PCM immunocompetent and immunosuppressed mice. However, this procedure may not be infeasible or it is limited for the therapy of human patients. Therefore, we have sought a less invasive but equally effective approach that would better mimics the autologous transplant of DC in a human patient. Here, we isolated and generated monocyte differentiated dendritic cells (MoDCs) from infected mice, pulsed them with P-10, and used them in the therapy of PCM in syngeneic mice. Similar to the results using BMDCs, the P10-pulsed MoDCs stimulated the proliferation of CD4+ T lymphocytes, induced a mixed production of Th1/Th2 cytokines and decreased the fungal burden in murine lungs in the setting of PCM. The process of differentiating MoDCs derived from an infected host, and subsequently used for therapy of PCM is much simpler than that for obtaining BMDCs, and represents a more reasonable approach to treat patients infected with Paracoccidioides. The results presented suggest that P10-primed MoDC may be a promising strategy to combat complicated PCM as well as to significantly shorten the lengthy requirements for treatment of patients with this fungal disease.

18.
Front Microbiol ; 8: 1057, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659882

RESUMO

Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America, with the highest prevalence in Brazil, Colombia, and Venezuela. Fungi of the Paracoccidioides genus are etiologic agents of the disease. The 15 amino acid peptide P10 is derived from gp43, the main diagnostic antigen of Paracoccidioides brasiliensis. We previously reported that P10-pulsed dendritic cells (DCs) induce a protective response against P. brasiliensis. Presently, dexamethasone-treated BALB/c mice were intratracheally infected with P. brasiliensis Pb18 to establish the therapeutic efficacy of P10-pulsed DCs. Immunosuppressed and infected animals that received DCs had a reduction in their fungal burden, and this result was most pronounced in mice receiving DCs primed with P10. The efficacy of therapeutic DCs was significantly augmented by concomitant treatment with trimethoprim-sulfamethoxazole. Additionally, primed-DCs with or without the antifungal drug induced a beneficial Th1-biased immune response and significantly reduced tissue damage. In conclusion, these studies with immunocompromised mice demonstrate that P10-pulsed DCs with or without concomitant antifungal drugs are potently effective in combating invasive PCM. These findings support further translational studies to validate the use of P10-primed DCs for PCM in immunocompetent and immunosuppressed hosts.

19.
Methods Mol Biol ; 1625: 113-128, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584987

RESUMO

The chapter reviews methods utilized for the isolation and characterization of a promising immunogen candidate, aiming at a human vaccine against paracoccidioidomycosis. Peptide P10 carries a T-CD4+ epitope and was identified as an internal sequence of the major diagnostic antigen known as gp43 glycoprotein. It successfully treated massive intratracheal infections by virulent Paracoccidioides brasiliensis in combination with chemotherapy.An introduction about the systemic mycosis was found essential to understand the various options that were considered to design prophylactic and therapeutic vaccine protocols using peptide P10.


Assuntos
Blastomyces/imunologia , Vacinas Fúngicas/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/prevenção & controle , Vacinas de Subunidades/imunologia , Animais , Antifúngicos/imunologia , Antígenos de Fungos/química , Antígenos de Fungos/imunologia , Antígenos de Fungos/isolamento & purificação , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas , Humanos , Imunização , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Paracoccidioidomicose/tratamento farmacológico , Peptídeos/química , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Proteômica/métodos
20.
Front Microbiol ; 8: 771, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515716

RESUMO

Vulvovaginal and invasive candidiasis are frequent conditions in immunosuppressed individuals caused by Candida albicans and non-albicans Candida spp. Fluconazole and Amphotericin B are the main drugs used to fight the infection. However, resistance to fluconazole and other azole antifungal drugs is an important clinical problem that encourages the search for new therapeutic alternatives. In this work, we evaluate the antifungal activity of the biphosphinic cyclopalladate C7a in the in vitro and in vivo model. Our results showed fungicidal activity, with low values of minimal inhibitory concentrations and minimum fungicidal concentrations, even for fluconazole and/or miconazole resistant Candida isolates. Fluorescence microscopy and transmission electron microscopy revealed that the compound was able to inhibit the formation of hyphae/pseudohyphae and, moreover, promoted morphological alterations in cellular organelles and structures, such as disruption of cell wall, apparent mitochondrial swelling, chromatin marginalization into the nuclei and increased numbers of electron-lucent vacuoles. C7a significantly decreased the biofilm formation and reduced the viability of yeast cells in mature biofilms when tested against a virulent C. albicans strain. In vivo assays demonstrated a significant decrease of fungal burden in local (vaginal canal) and disseminated (kidneys) infection. In addition, we observed a significant increase in the survival of the systemically infected animals treated with C7a. Our results suggest C7a as a novel therapeutic agent for vaginal and disseminated candidiasis, and an alternative for conventional drug-resistant Candida.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...